基于改进Deeplabv3+的遥感滑坡分割提取模型
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

河北省自然科学基金(F2022208002)


Remote sensing landslide segmentation and extraction model based on improved Deeplabv3+
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决传统高分辨率滑坡影像分割方法在处理细节和模糊边界时性能受限的问题,提出了一种融合Swin Transformer网络、卷积块注意力模块(convolutional block attention module, CBAM)、位置注意力特征金字塔网络(position attention feature pyramid network,PA-FPN)与多层卷积解码器的增强型Deeplabv3+模型(SCPD-Deeplabv3+)。首先,对基线模型Deeplabv3+进行改进,采用 Swin Transformer作为主干网络,在Deeplabv3+模型的空洞空间金字塔池化(atrous spatial pyramid pooling,ASPP)模块中引入CBAM,在解码器中集成PA-FPN,并在上采样过程中增加更多的卷积层;其次,对SCPD-Deeplabv3+模型进行训练;最后,将高分辨率滑坡影像测试集输入训练后的 SCPD-Deeplabv3+模型中进行消融实验,并与 U型网络(U-shaped network,UNet)、比例积分微分网络(proportional integral derivative network, PIDNet)、实时语义分割 Transformer(real-time Transformer for semantic segmentation, RTFormer)等主流模型进行对比评估与可视化分析。结果表明:SCPD-Deeplabv3+的平均交并比、精度、召回率和F1-score分别达到90.18%、93.57%、94.47%和93.58%,比改进前的Deeplabv3+分别提高了3.39个百分点、1.45个百分点、3.90个百分点和 3.51个百分点。所提方法有效提升了滑坡区域分割的精确度和细节复原能力,为遥感滑坡监测与灾害评估提供了可靠的技术手段。

    Abstract:

    In order to address the limitations of traditional high-resolution landslide image segmentation methods in handling details and blurred boundaries, an enhanced Deeplabv3+ model (SCPD-Deeplabv3+) was proposed, which integrated Swin Transformer network, convolutional block attention module (CBAM), position attention feature pyramid network (PA-FPN), and multi-layer convolutional decoder. Firstly, the baseline model Deeplabv3+ was improved by adopting Swin Transformer as the backbone network, introducing CBAM into the atrous spatial pyramid pooling (ASPP) module of Deeplabv3+, integrating PA-FPN into the decoder, and adding more convolutional layers during the upsampling process. Secondly, the improved Deeplabv3+ model was trained. Finally, the high-resolution landslide image test set was fed into the trained SCPD-Deeplabv3+ model for ablation experiments to analyze the role of each module, and comparisons with mainstream models such as UNet, proportional-integral-derivative network (PIDNet), and real-time transformer (RTFormer) for semantic segmentation were performed through quantitative evaluation and visualization. The results show that SCPD-Deeplabv3+ achieves an average intersection over union of 90.18%, precision of 93.57%, recall of 94.47%, and F1-score of 93.58%, respectively, which are improved by 3.39 percentage points, 1.45 percentage points, 3.90 percentage points, and 3.51 percentage points compared with the unmodified model. The proposed method effectively enhances the segmentation accuracy and detail restoration capability for landslide areas, providing a reliable technical means for remote sensing landslide monitoring and disaster assessment.

    参考文献
    相似文献
    引证文献
引用本文

王建霞,郭玉凤,杨春金,张晓明.基于改进Deeplabv3+的遥感滑坡分割提取模型[J].河北工业科技,2025,42(5):401-411

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-01-21
  • 最后修改日期:2025-07-02
  • 录用日期:
  • 在线发布日期: 2025-10-09
  • 出版日期:
文章二维码