多尺度自注意力和局部匹配的光流估计方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

中央引导地方科技发展资金项目(246Z0109G)


Multi-scale self-attention and local matching optical flow estimation method
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决光流估计中存在的感受野受限和边缘模糊问题,提出了一种多尺度自注意力和局部特征匹配的光流估计模型。该模型在循环全对域变换(recurrent all-pairs field transforms,RAFT)模型的基础上进行改进。首先,在特征提取模块中添加多尺度自注意力机制,利用多尺度自注意力学习远距离像素之间的依赖关系,得到图像特征信息;其次,在低级光流上采样的过程中添加局部匹配模块,得到高分辨率的光流;然后,在光流估计数据集上完成模型训练;最后,对训练好的模型进行消融实验和对比实验。结果表明:所提模型在MPI Sintel Clean数据集上和MPI Sintel Final数据集上平均端点误差(average end point error,AEPE)分别为1.18和1.67,在KITTI-2015数据集上平均端点误差和异常光流百分比(flow error of all,Fl-all)分别为1.01和3.40%,均优于RAFT模型。所提光流估计模型具有较高的光流估计准确性,能够为依赖高精度运动信息的计算机视觉任务提供有效支持。

    Abstract:

    To address the issues of limited receptive field and edge blurring in optical flow estimation, an optical flow estimation model based on multi-scale self-attention and local feature matching was proposed. This model was an improvement upon the recurrent all-pairs field transforms (RAFT) model.Firstly, a multi-scale self-attention mechanism was integrated into the feature extraction module, which learned the dependencies between long-distance pixels using multi-scale self-attention to obtain image feature information. Secondly, a local matching module was added during the upsampling process of low-level optical flow to generate high-resolution optical flow. Then, the model was trained on optical flow estimation datasets. Finally, ablation experiments and comparative experiments were conducted on the trained model. The results show that the proposed model achieves average end point error (AEPE) of 1.18 and 1.67 on the MPI Sintel Clean and MPI Sintel Final datasets, respectively, and 1.01 and 3.40% for average end point error and flow error of all (Fl-all) on the KITTI-2015 dataset, all outperforming RAFT. The proposed optical flow estimation model exhibits high accuracy in optical flow estimation, which can provide effective support for computer vision tasks relying on high-precision motion information.

    参考文献
    相似文献
    引证文献
引用本文

李春华,李晓东.多尺度自注意力和局部匹配的光流估计方法[J].河北工业科技,2025,42(5):412-420

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-15
  • 最后修改日期:2025-05-17
  • 录用日期:
  • 在线发布日期: 2025-10-09
  • 出版日期:
文章二维码