基于K-SVD字典学习与ResNet的混凝土结构损伤识别
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

中国电建集团西北勘测设计研究院有限公司重大科技项目(XBY-ZDKJ-2021-06)


Damage identification of concrete structures based on K-SVD dictionary learning and ResNet
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决压电波动法在检测混凝土结构时面临的源信号信噪比低、背景噪声大与非平稳性问题,提出了一种K奇异值分解(K-means singular value decomposition,K-SVD)更新字典的压电信号滤波方法,并对混凝土结构损伤进行了识别。首先,对开裂状态与完整状态下混凝土结构的压电信号进行采集,并将采集的信号进行分类处理;其次,对上述采集的压电信号进行滤波处理,并对K-SVD字典学习滤波结果与未滤波结果进行对比分析,评价K-SVD字典学习滤波方法的适用性;最后,利用残差卷积神经网络(residual network,ResNet)对滤波后的压电信号进行分类识别。结果表明:利用基于K-SVD字典学习与ResNet模型,能够稳定地识别混凝土结构内部损伤的压电信号;训练集与测试集的损伤信号识别准确率分别为93.25%与92.38%,无损信号的识别准确率分别为95.41%与94.67%,相较于未滤波的采集信号,其准确率提升了10个百分点以上;利用K-SVD字典学习与ResNet对混凝土结构损伤进行有效识别,实现了对混凝土结构内部损伤区域的定位。研究结果可为混凝土结构健康监测的数据处理提供一种新的思路。

    Abstract:

    To address the issues of low signal-to-noise ratio, high background noise, and non-stationarity in detecting concrete structure source signals based on piezoelectric wave method, a piezoelectric signal filtering method based on K-singular value decomposition (K-SVD) to update the dictionary was proposed, and the damage of concrete structures were identified. Firstly, piezoelectric signals from concrete structures in both cracked and intact states were collected and classified. Secondly, the acquired piezoelectric signals were filtered, and the the results using the K-SVD dictionary learning method were compared and analyzed with the unfiltered results to evaluate the applicability of the K-SVD dictionary learning filtering method. Finally, the filtered piezoelectric signals using ResNet were classified and recognized. The results show that the method based on K-SVD dictionary learning and ResNet can stably identify the piezoelectric signals of internal damage in concrete structures. The accuracy of damage signal recognition in training set and test set is 93.25% and 92.38%, respectively. The recognition accuracy of lossless signal is 95.41% and 94.67%,respectively, which is more than 10 percentage points higher than that of unfiltered signal. The effective damage identification in concrete bridge structures through the integration of K-SVD dictionary learning and ResNet has achieved the localization of internal damage areas in the concrete structures. The research findings present a novel approach to data processing in the health monitoring of concrete bridge structures.

    参考文献
    相似文献
    引证文献
引用本文

李红心,陈宗刚,韩 松.基于K-SVD字典学习与ResNet的混凝土结构损伤识别[J].河北工业科技,2025,42(5):436-443

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-13
  • 最后修改日期:2025-07-05
  • 录用日期:
  • 在线发布日期: 2025-10-09
  • 出版日期:
文章二维码