基于机器学习的致密储层水平井压裂缝尺度特征预测方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

陕西省技术创新引导专项计划项目(2023-YD-CGZH-02)[JP]


Machine learning based prediction method for horizontal well pressure fracture scale characteristics in tight reservoirs
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决致密储层压裂缝尺度预测中存在的精度不足的问题,构建了一种融合黑翅鸢优化算法(black winged kite algorithm , BKA)与(random forest , RF)算法随机森林的多目标回归预测模型。首先,以鄂尔多斯盆地长4+5和长6储层为研究对象,通过现场数据和FrSmart压裂数值模拟软件生成大规模样本集,覆盖多种地质与施工条件;其次,采用皮尔逊相关系数和RF算法,确定了影响裂缝长、宽、高的关键地质与施工因素,并对这些因素进行相关性分析与重要性排序;最后,利用BKA优化RF模型的超参数,对裂缝尺度特征进行预测。结果表明:施工参数对裂缝尺度影响最为显著,地质参数主要控制裂缝形态;所构建的BKA-RF模型在裂缝长、宽、高预测中均优于粒子群优化随机森林(particle swarm optimization-random forest,PSO-RF)模型,其中缝长预测的测试集平均相对误差仅为2.44%,决定系数R2超过0.94。该模型不仅为压裂参数优化与现场施工设计提供了可靠支撑,也为致密油气藏的高效开发提供了新的技术路径。

    Abstract:

    In order to solve the problems of insufficient accuracy in predicting the scale of fractures in tight reservoirs, a multi-objective regression prediction model was constructed by integrating the black winged kite algorithm (BKA) and random forest (RF) algorithm. Firstly, taking the Chang 4+5 and Chang 6 reservoirs in the Ordos Basin as the research objects, a large-scale sample set was generated through on-site data and FrSmart fracturing numerical simulation software, covering various geological and construction conditions; Secondly, Pearson correlation coefficient and random forest algorithm were used to determine the key geological and construction factors that affect fracture length, width, and height, and to conduct correlation analysis and importance ranking of these factors; Finally, the black winged kite algorithm was used to optimize the hyper parameters of the random forest model and predict the fracture scale characteristics. The results indicate that construction parameters have the most significant impact on fracture scale, while geological parameters mainly control fracture morphology. The constructed BKA-RF model outperforms particle swarm optimization-random forest (PSO-RF) in predicting fracture length, width, and height. The average relative error of the test set for fracture length prediction is only 2.44%, and the coefficient of determination R2 exceeds 0.94. This model not only provides reliable support for optimizing fracturing parameters and on-site construction design, but also offers a new technological path for efficient development of tight oil and gas reservoirs.

    参考文献
    相似文献
    引证文献
引用本文

袁 海,樊平天,杨潇文,宋振雨,宋宪坤,刘月田,李冠林.基于机器学习的致密储层水平井压裂缝尺度特征预测方法[J].河北工业科技,2025,42(5):479-489

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-15
  • 最后修改日期:2025-06-25
  • 录用日期:
  • 在线发布日期: 2025-10-09
  • 出版日期:
文章二维码